Tetrahedron Letters, Vol.30, No.5, pp 601-604, 1989 0040-4039/89 \$3.00 + .oo Printed in Great Britain Perqamon Press plc

REVERSED STEREOCHEMICAL CONTROL IN THE REGIOSELECTIVE REDUCTION OF HINDERED DIPHENYLPHOSPHINOYL (Ph₂PO-) KETONES AND ENONES

Jason Elliott, David Hall, and Stuart Warren* University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, England.

Reduction of a'-diphenylphosphinoyl enones (6) and crowded a-diphenylphosphinoyl ketones (4) with sodium borohydride in the presence of cerium chloride gives the otherwise difficult to obtain erythro-alcohols (5) and (7).

The regioselective 1,2 reduction of conjugated enones is now readily accomplished using the Luche^t conditions (NaBH₄, CeCl₃, MeOH, -78 $°C$). We have shown² that these conditions also lead to the stereo-selective reduction of the ketones (1) and enones (3) giving erythro alcohols (2) and hence Z-alkenes³ in good yield in contrast to the normally threo-selective reduction of both (1) and the $a-Ph_2PO$ ketones (4) with $NABH_d$ alone. We said that this reversal of stereoselectivity in the presence of cerium did not occur with the Ph₂PO compounds which gave poorer threo selectivity, e.g. (4b), in most cases. We now report that a wider examination of substituted ketones (4) and enones (6) reveals that this conclusion (and inevitably its explanation) is wrong and that cerium-catalysed reduction of ketones (4) and (6) can in fact be used in many cases to prepare the erythro alcohols (5) and (7) in high yield.

Work on α' -Ph₂PO enones led us to study their reduction under the Luche conditions.¹ Two series of molecules were investigated: those with achiral R^1 (6) prepared by standard methods, $\frac{4}{3}$ and pairs of diastereoisomers (9) and (11) separated by h.p.l.c. The stereochemistry of (9e) was determined by X-ray crystallography.⁵ Reduction with NaBH_A alone gave 1,4-reduction to the saturated ketones (8), but $N_{A}/CeCl_{3}$ gave totally regioselective 1,2-reduction accompanied by a remarkably high stereoselectivity. The results summarised in the table led us to examine also a variety of simple ketones (4) and the following conclusions can be drawn:

(a) With Rl=Me or n-alkyl, ketones **(4a,b)** and enones **(6a-f)** are reduced by $\texttt{NabH}_4/\texttt{CeCl}_3$ to give the weak three selectivity observed before.²

(b) If $R^{\mathbf{1}}$ is branched β ' to the carbonyl group, reduction of both ketones **(4d,e)** and enones **(6h)** becomes highly stereoselective in the reverse sense, and the erythro alcohols (5) and (7) may be isolated in high yield.

(c) If R^1 gets too large (6i), some 1,4-reduction of the enones to give the saturated ketone (8) may occur, though the 1,2-reduction is still highly stereoselective [as is the reduction of the ketones $(4e)$].

(d) If there is a second chiral centre 8' to the carbonyl group, both diastereoisomers (9) and (11) give the same high erythro selectivity. There is essentially no match or mis-match, 6 the stereoselectivity being dominated by the a' chiral centre (bearing Ph_2PO).

 (9)

 (10)

	۷			۷		
	Starting Materials			Product	Yield	Erythro
	R^1	R^2	R^3		$($ $%$ $)$:Threo
(1a)	Me	Ph		(2a)	97	$86:14^{a}$
(4a)	Me	${\tt Ph}$		(5a)	90	30:70
(1b)	Et	Ph.		(2b)	98	$84:16^{a}$
(4b)	Et	Ph		(5b)	100	$23:77^{\text{a}}$
(4c)	CH_2CH_2OH	(CH_2) ₂ CO ₂ Me		(5c)	77	$5:95^{a,b}$
(4d)	$i-Pr$	Ph		(5d)	100	$>95:5^{\circ}$
(4e)	${c_6}^{\rm H}_{11}^{\rm d}$	${\tt Ph}$		(5e)	95	$>95:5^{\circ}$
(6a)	Me	Me	н	(7a)	95	38:62
(6b)	Me	н	Me	(7 _b)	92	45:55
(3c)	Me	$\mathbf H$	$n-Pr$	(2c)	83	93:7
(6c)	Me	H	$n-Pr$	(7c)	71	50:50
(6d)	Me	Me	Me	(7d)	90	25:75
(6e)	Me	i-Pr	н	(7e)	91	22:78
(6f)	n-Bu	Me	Me	(7f)	85	55:45
(6g)	i -PrCH ₂	Me	Me	(7g)	90	67:33
(6h)	i-Pr	Me	Me	(7h)	93	$>95:5^{\circ}$
(6i)	đ $C_{6}H_{11}$	Me	Me	(7i)	48°	$>95:5^{\circ}$
(9a)	Me	Me	Н	(10a)	90	$>95:5^{\circ}$
(9b)	Me	Me	Me	(10 _b)	79	$>95:5^{\circ}$
(11b)	Me	Me	Me	(12b)	90	$>95:5^{\circ}$
(9c)	Me	Et	н	(10c)	89	$>95:5^{\circ}$
(11c)	Me	Et	н	(12c)	92	$>95:5^{\circ}$
(9d)	$OCPh_3$	Me	н	(10d)	88	$>95:5^{\circ}$
(9e)	$OCPh_3$	Me	Me	(10e)	71	$>95:5^{\circ}$
(11e)	OCPh ₂	Me	Me	(12e)	88	$>95:5^{\circ}$

Table. Reduction of a-Ph₂PO Ketones and a'-Ph₂PO Enones with NaBH₄/CeCl₃*

*All reductions were carried out by adding NaBH4 **(30 mmol)** slowly to a solution of the enone (10 mmol) and CeCl₃ (10 mmol) in EtOH (10 mls) at **-78 "c.** After **30** mins, water and dil. HCl were added. Extraction with CH_2Cl_2 , drying, and evaporation gave the alcohol.

 $\frac{1}{4}$ See ref. 2. $\frac{b_{Erythro}}{c}$ could not be detected, yield is of pure threo. c Threo could not be detected, yield is of pure erythro. d Cyclohexyl. e And 43% of the saturated ketone **(8i).**

We have n.O.e., i.r., and X-ray evidence that the enones prefer conformation (13) with H^A in the plane of the s-trans enone.⁵¹H N.m.r. experiments under the reaction conditions show that the cerium atom is close to the methyl group and the <u>ortho</u> aromatic protons in (9) and (11) and suggest that Ce³⁺ is chelated by C=O and P=O [and OH in (4c)]. We suggest that the normal threo selectivity arises from conformation (14) [enhanced by OH chelation in $(4c)$], the reduced threo selectivity $(R^1$ small) from attack on either side of confor-

mation (15), and the reversed erythro selectivity from attack opposite the large R^1 group in conformation (15). Transition state (14) corresponds to the Felkin³ model, while (15) is distorted by chelation and steric repulsion between the large R^1 group and the co-ordination sphere of cerium.

The stereospecific formation of E alkenes from threo alcohols (5) and Z alkenes from $\frac{erythro}{$ alcohols (5) is well established.³ Threo alcohols (5) of most types are available $^{\prime\,\prime}$ by NaBH $_4$ reduction of substituted ketones (4), but erythro alcohols (5) with branched \overline{R}^1 and allylic alcohols (7), (10), and (12) were available only by the Horner-Wittig reaction^{3,8} which shows poor stereoselectivity in these cases. The cerium-catalysed reductions now make available a wide range of erythro alcohols with previously unattainable stereoselectivity. Both stereoisomers of the allylic alcohols (7) can be used in stereochemically controlled allylic transpositions. ⁸

Acknowledgements. We thank S.E.R.C and Schering Agrochemicals Ltd., for a C.A.S.E. award and Drs Anthony Buss and Philip Dudfield for many helpful discussions.

References and Notes

- 1. J.-L. Luche, J. Am. Chem. Sot., 1978, 100, 2226; A.L. Gemal and J.-L. Luche, Ibid., 1981, 103, 5454.
- 2. N. Greeves and S. Warren, Tetrahedron Lett., 1986, 27, 259; J. Elliott and S. Warren, Ibid., 1986, 27, 645.
- 3. A.D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.
- 4. The enones were made by addition of the lithium derivative of the appropriate alkyldiphenylphosphine oxide to an enal followed by Swern oxidation.
- 5. M. Doyle, D. Hall, P.R. Raithby, N. Skelton, and S. Warren, unpublished work.
- 6. S. Masamune, W. Choy, J.S. Petersen, and L.R. Sita, Angew. Chem., Int. Edn. Engl., 1985, 24, 1.
- 7. A.D. Buss, N. Greeves, R. Mason, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 2569.
- 8. A.B. McElroy and S. Warren, Tetrahedron Lett., 1985, 26, 1677. (Received in UK 24 November 1988)